Search results for "àlgebra lineal"
showing 10 items of 14 documents
A Teaching proposal for the study of eigenvectors and eigenvalues
2017
[EN] In this work, we present a teaching proposal which emphasizes on visualization and physical applications in the study of eigenvectors and eigenvalues. These concepts are introduced using the notion of the moment of inertia of a rigid body and the GeoGebra software. The proposal was motivated after observing students¿ difficulties when treating eigenvectors and eigenvalues from a geometric point of view. It was designed following a particular sequence of activities with the schema: exploration, introduction of concepts, structuring of knowledge and application, and considering the three worlds of mathematical thinking provided by Tall: embodied, symbolic and formal.
On a matrix group constructed from an {R,s+1,k}-potent matrix
2014
Let R is an element of C-nxn be a {k}-involutory matrix (that is, R-k = I-n) for some integer k >= 2, and let s be a nonnegative integer. A matrix A is an element of C-nxn is called an {R,s + 1, k}-potent matrix if A satisfies RA = A(s+1)R. In this paper, a matrix group corresponding to a fixed {R,s + 1, k}-potent matrix is explicitly constructed, and properties of this group are derived and investigated. This group is then reconciled with the classical matrix group G(A) that is associated with a generalized group invertible matrix A.
Inverse eigenvalue problem for normal J-hamiltonian matrices
2015
[EN] A complex square matrix A is called J-hamiltonian if AT is hermitian where J is a normal real matrix such that J(2) = -I-n. In this paper we solve the problem of finding J-hamiltonian normal solutions for the inverse eigenvalue problem. (C) 2015 Elsevier Ltd. All rights reserved.
The inverse eigenvalue problem for a Hermitian reflexive matrix and the optimization problem
2016
The inverse eigenvalue problem and the associated optimal approximation problem for Hermitian reflexive matrices with respect to a normal {k+1}-potent matrix are considered. First, we study the existence of the solutions of the associated inverse eigenvalue problem and present an explicit form for them. Then, when such a solution exists, an expression for the solution to the corresponding optimal approximation problem is obtained.
Characterizations of {K,s+1}-Potent Matrices and Applications
2012
Recently, situations where a matrix coincides with some of its powers have been studied. This kind of matrices is related to the generalized inverse matrices. On the other hand, it is possible to introduce another class of matrices that involve an involutory matrix, generalizing the well-known idempotent matrix, widely useful in many applications. In this paper, we introduce a new kind of matrices called {K,s+1}-potent, as an extension of the aforementioned ones. First, different properties of {K,s+1}-potent matrices have been developed. Later, the main result developed in this paper is the characterization of this kind of matrices from a spectral point of view, in terms of powers of the ma…
Matrices A such that A^{s+1}R = RA* with R^k = I
2018
[EN] We study matrices A is an element of C-n x n such that A(s+1)R = RA* where R-k = I-n, and s, k are nonnegative integers with k >= 2; such matrices are called {R, s+1, k, *}-potent matrices. The s = 0 case corresponds to matrices such that A = RA* R-1 with R-k = I-n, and is studied using spectral properties of the matrix R. For s >= 1, various characterizations of the class of {R, s + 1, k, *}-potent matrices and relationships between these matrices and other classes of matrices are presented. (C) 2018 Elsevier Inc. All rights reserved.
On the equivalence between the Scheduled Relaxation Jacobi method and Richardson's non-stationary method
2017
The Scheduled Relaxation Jacobi (SRJ) method is an extension of the classical Jacobi iterative method to solve linear systems of equations ($Au=b$) associated with elliptic problems. It inherits its robustness and accelerates its convergence rate computing a set of $P$ relaxation factors that result from a minimization problem. In a typical SRJ scheme, the former set of factors is employed in cycles of $M$ consecutive iterations until a prescribed tolerance is reached. We present the analytic form for the optimal set of relaxation factors for the case in which all of them are different, and find that the resulting algorithm is equivalent to a non-stationary generalized Richardson's method. …
The diamond partial order in rings
2013
In this paper we introduce a new partial order on a ring, namely the diamond partial order. This order is an extension of a partial order defined in a matrix setting in [J.K. Baksalary and J. Hauke, A further algebraic version of Cochran's theorem and matrix partial orderings, Linear Algebra and its Applications, 127, 157--169, 1990]. We characterize the diamond partial order on rings and study its relationships with other partial orders known in the literature. We also analyze successors, predecessors and maximal elements under the diamond order.
Special elements in a ring related to Drazin inverses
2013
In this paper, the existence of the Drazin (group) inverse of an element a in a ring is analyzed when amk = kan, for some unit k and m; n 2 N. The same problem is studied for the case when a* = kamk-1 and for the fk; s+1g-potent elements. In addition, relationships with other special elements of the ring are also obtained
A note on k-generalized projections
2007
Abstract In this note, we investigate characterizations for k -generalized projections (i.e., A k = A ∗ ) on Hilbert spaces. The obtained results generalize those for generalized projections on Hilbert spaces in [Hong-Ke Du, Yuan Li, The spectral characterization of generalized projections, Linear Algebra Appl. 400 (2005) 313–318] and those for matrices in [J. Benitez, N. Thome, Characterizations and linear combinations of k -generalized projectors, Linear Algebra Appl. 410 (2005) 150–159].